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1. OBJECTIVE 

The objective of this paper is to present some theoretical and pragmatic foundations for deciding on 

appropriate choice of the cycle length for Markov models.  An analogous problem from the domain of 

digital signal processing will be presented.  As audio technology was making a transition from analog 

media (vinyl records, analog tapes) to digital (Audio CD, mp3) the technical challenges included an 

appropriate choice of sampling rates used in conversion from analog to digital signals.  This paper 

presents a conjecture that the signal sampling theoretical framework established by Claude Shannon is 

informative for the choice of the cycle length of Markov models. 

Comparison between Markov models and other models will provide additional tools for a modeler to 

choose the appropriate cycle lengths for their models.  Finally, a variable cycle length Markov model will 

be used to facilitate empirical search for appropriate length of the cycle, allowing for tradeoffs between 

run time and expected error.  Models with tunnel states will not be considered in this paper. 

2. ANALOGY WITH SIGNAL SAMPLING – CHROSNY CONJECTURE 

Chrosny’s conjecture is that there is similarity between Markov model time cycle and sampling interval 

in the signal sampling theorem by Nyquist-Shannon 1 2.  This theorem has been used in 

Telecommunications and Digital music standards for decades.  It can be stated simply that if we want to 

reproduce sound with good quality, we need to sample it at least twice as often (fast) as the highest 

(fastest) frequency we want to reproduce with sufficient fidelity.  Since good human hearing range 

reaches to about 20,000Hz (typically much less than 22,000Hz), the original music CD sampling standard 

was established at 44,000Hz. 
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To illustrate the reason for choosing the sampling rate it may be helpful to see the following diagrams: 

 

Figure 1 

Sampling at ¼ of the original frequency (sampling period is 4 time longer than original signal’s period). 

In Figure 1 the sampling is done at slower frequency than the original signal.  The red bars represent the 

time points where the sample of the original signal is captured indicated by the red circles.  The sample 

is converted to a digital form representing the magnitude and sign, pictured by the length of the red bar. 

Such digitized signal can then be used to reconstruct using digital to analog conversion process (as 

shown by the blue line).  The details of filtering the reconstructed signals to arrive at something 

resembling a sine wave are beyond the scope of this description.  If the sampling is done at exactly the 

same frequency of the original signal the recovery of the signal will not be reliable.  If the sampling 

happens to capture the peaks and valleys as in Figure 2 the signal will be recovered.   

 

Figure 2 

Sampling at same frequency as the original signal frequency (sampling period is the same as the signal’s period). 
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If we are unlucky and the sampling happens at the zero crossing points no signal is recovered as in figure 

below: 

 

Figure 3 

Sampling at same frequency as the original signal frequency (sampling period is the same as the signal’s period). 

 

With sampling at twice the frequency of the original signal (higher sampling rate is better), we are 

guaranteed to avoid recovering incorrect signal (so called ‘aliasing problem’). 

An analogous situation may exist in choosing cycle length (which is equivalent to sampling rate), 

suggesting that we should consider using cycle length of less than half the shortest length of a 

phenomena we are trying to model (e.g., 12 hours or shorter for a model that deals with daily hospital 

stays).  In models dealing with less frequent events, the modeler should select the cycle length that 

minimizes the probability of more than one event happening within a single model cycle. 

Chrosny Conjecture 

 

The practical limitations on the cycle length depend on actual model run time - similar to practical 

limitations in signal processing that required higher cost of hardware and software to increase the 

processing speed.  The remainder of this paper will address some practical approaches to establish 

sufficiently short cycle times experimentally. 

 

3. Markov models with cycle length as a variable 

Most often Markov models are built with a fixed cycle length, chosen a priori by the modeler. They are 

the simplest types of Markov Models for both cohort and individual patient simulations.  However, 

building a version of such models where cycle length is a variable is only moderately more complicated.  

Choose Markov model cycle length that is shorter than half the occurrence 

interval of the fastest phenomenon you try to model. 

 



5 
 

The ability to run sensitivity analysis on the cycle length is a great way to experimentally establish what 

cycle length is sufficiently short and trade it off against expected run time. 

An interesting case study of continuous time Partitioned Survival model conversion to variable cycle 

length Markov model is discussed in the white paper “Equivalence of Partitioned Survival and Markov 

models” 3  TreeAge Pro can automatically convert a PartSA model to a Markov model that is 

instrumented with a variable cycle length. 

The converted Markov model includes a new parameter CyclesPerYear. This parameter is used to 

change the Markov model’s cycle length. Increasing CyclesPerYear shortens the cycle length and 

improves the accuracy of the results with respect to the original PartSA model.  The CyclesPerYear value 

affects transition probability calculations in the complex expressions.  Annual Costs and Utilities from 

the PartSA model are divided by CyclesPerYear to generate appropriate values for the cycle length.  Also, 

the termination condition uses TimeHorizon multiplied by CyclesPerYear to make sure that consistent 

TimeHorizon is maintained for different cycle lengths. 

 

Below are the “zoomed in” sections of the model with the relevant CyclesPerYear expressions. 
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As can be seen the introduction and utilization of the cycles per year variable is not overly complicated 

and can easily be done as the model is being built.  While it is possible to introduce adjustable cycle 

length to an existing model, the complexity of that task depends on the complexity of the model itself.  

There are many search and replace features within TreeAge Pro that are helpful in this process, but it is 

a bit more complex than building adjustable cycle length in from the start. 

It should be noted that cycle length is varied between simulation runs and remains constant during 

any a specific simulation.  While it is possible to create models which change the cycle length during a 

single simulation, these models are beyond the scope of this paper. 

4. Using other models as references (DES, Partitioned Survival Analysis). 

There are a number of different simple examples models showing equivalence of results between 

PartSA (PartSA-1Curve.trex) and Markov model (Markov-1Curve.trex).  An equivalent DES model is also 

included (DES-1Curve.trex) and can be used as a reference for comparison with other models. 
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Zooming in on the relevant results: 

 
 

If we change the CyclesPerYear to 12 (monthly cycle), the Markov results will approximate the PartSA 

results to within less than 0.01%: 
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An equivalent DES model can be used as a reference as well.  However, DES models have to use a Monte 

Carlo simulation and not a simple rollback expected value calculation.  The example below shows the 

results of a simulation of 10,000 samples of 1,000 trials each.  The summary report can be used for 

estimating the prediction interval of the mean costs and effectiveness. 
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Exporting the summary report to Excel and adding some basic formulas for 95% prediction interval of 

the means gives the following results: 

 

Statistic Cost Effectiveness 

Mean 4988.149169 4.489334252 

Std Deviation 156.7140807 0.141042673 

Minimum 4428.283784 3.985455406 

2.5% 4680.930057 4.212837052 

10% 4788.126527 4.309313874 

Median 4986.104767 4.48749429 

90% 5186.350679 4.667715611 

97.5% 5305.225846 4.774703262 

Maximum 5662.223644 5.09600128 

Sum 49881491.69 44893.34252 

Size (n) 10000 10000 

Variance 24559.30308 0.019893035 

Variance/Size 2.455930308 1.9893E-06 

SQRT[Variance/Size] 1.567140807 0.001410427 

   
Desired Prediction confidence % 95%  
Inverse Normal statistic at the desired level 1.959963985  

   
Upper bound of the mean Prediction Interval 4991.220708 4.492098638 

The Mean estimate 4988.149169 4.489334252 

Lower bound of the mean Prediction Interval 4985.077629 4.486569866 
 

 

The DES results agree well with the PartSA results and monthly cycle Markov results. 

 

Note that such close convergence depends on the shape of the survival curve.  If the rate and shape of 

the distribution is changed using the parameters (rate_PF and shape_PF), convergence will change 

depending on how fast the survival curve decays.  (For example, setting the rate to 5 and shape to 10 

and time horizon to 1, and then comparing the results at different CyclesPerYear.) 

 

Obviously the more realistic Markov models can have a much more complicated structure and capture 

transitions, which cannot be represented within PartSA models.  PartSA models rely on assumption that 

transitions are only made toward sicker states and eventually to the dead state, they cannot be used as 

a reference for more complicated Markov models.  However, DES models can replicate any Markov 

structure and tend to run more efficiently than Markov models, so they can be used to compare and 

double check results of Markov models. 
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5. Empirical assessment of appropriate cycle length. 

 

Another way to assess if the cycle length is sufficiently short is to use the one-way sensitivity analysis on 

the CyclesPerYear variable and observe how the results converge to a stable set. 

 

For example, using the same Markov example model (Markov-1Curve.trex) and running one-way 

sensitivity analysis with CyclesPerYear starting at 1 and ending at 141 with 14 intervals will generate the 

following results: 

 

CyclesPerYear Cost Eff 

1 5004.22052 4.503798468 

11 4987.743638 4.488969274 

21 4987.643938 4.488879544 

31 4987.623539 4.488861185 

41 4987.616129 4.488854516 

51 4987.612631 4.488851368 

61 4987.610707 4.488849636 

71 4987.609537 4.488848583 

81 4987.608773 4.488847896 

91 4987.608247 4.488847422 

101 4987.607869 4.488847082 

111 4987.607588 4.48884683 

121 4987.607375 4.488846637 

131 4987.607208 4.488846487 

141 4987.607075 4.488846368 

 

Depending on the desired level of accuracy (how far the cost-effectiveness decision point is from the 

threshold) and practical run time of the model is, cycle time length can be chosen appropriately. 

 

6. Conclusions. 

 

It has been a common knowledge that shorter cycle times increase the accuracy of Markov model 

estimates.  In this paper we tried to offer some practical ways to confirm this fact and offer ways of 

instrumenting models to facilitate experimenting with variable cycle lengths.  The use of Partitioned 

Survival Analysis and Discrete Event Simulation models as references to confirm the Markov results was 

demonstrated.  Finally, an analogy to signal processing’s choice of sampling frequency established by 

Claude Shannon was highlighted as a practical rule of thumb: to use cycle length at least half the length 

of typical events being modelled.  We are not aware of any detail mathematical proofs similar to 

Shannon’s theorem in the domain of Markov models, but such research might be of interest in the 

future. 
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