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1. OBIJECTIVE

The objective of this paper is to present some theoretical and pragmatic foundations for deciding on
appropriate choice of the cycle length for Markov models. An analogous problem from the domain of
digital signal processing will be presented. As audio technology was making a transition from analog
media (vinyl records, analog tapes) to digital (Audio CD, mp3) the technical challenges included an
appropriate choice of sampling rates used in conversion from analog to digital signals. This paper
presents a conjecture that the signal sampling theoretical framework established by Claude Shannon is
informative for the choice of the cycle length of Markov models.

Comparison between Markov models and other models will provide additional tools for a modeler to
choose the appropriate cycle lengths for their models. Finally, a variable cycle length Markov model will
be used to facilitate empirical search for appropriate length of the cycle, allowing for tradeoffs between
run time and expected error. Models with tunnel states will not be considered in this paper.

2. ANALOGY WITH SIGNAL SAMPLING — CHROSNY CONJECTURE

Chrosny’s conjecture is that there is similarity between Markov model time cycle and sampling interval
in the signal sampling theorem by Nyquist-Shannon ! 2. This theorem has been used in
Telecommunications and Digital music standards for decades. It can be stated simply that if we want to
reproduce sound with good quality, we need to sample it at least twice as often (fast) as the highest
(fastest) frequency we want to reproduce with sufficient fidelity. Since good human hearing range
reaches to about 20,000Hz (typically much less than 22,000Hz), the original music CD sampling standard
was established at 44,000Hz.



To illustrate the reason for choosing the sampling rate it may be helpful to see the following diagrams:

Signal sampling.
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Figure 1
Sampling at % of the original frequency (sampling period is 4 time longer than original signal’s period).

In Figure 1 the sampling is done at slower frequency than the original signal. The red bars represent the
time points where the sample of the original signal is captured indicated by the red circles. The sample
is converted to a digital form representing the magnitude and sign, pictured by the length of the red bar.
Such digitized signal can then be used to reconstruct using digital to analog conversion process (as
shown by the blue line). The details of filtering the reconstructed signals to arrive at something
resembling a sine wave are beyond the scope of this description. If the sampling is done at exactly the
same frequency of the original signal the recovery of the signal will not be reliable. If the sampling
happens to capture the peaks and valleys as in Figure 2 the signal will be recovered.

Signal sampling.
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Figure 2

Sampling at same frequency as the original signal frequency (sampling period is the same as the signal’s period).



If we are unlucky and the sampling happens at the zero crossing points no signal is recovered as in figure
below:

Signal sampling.
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Figure 3

Sampling at same frequency as the original signal frequency (sampling period is the same as the signal’s period).

With sampling at twice the frequency of the original signal (higher sampling rate is better), we are
guaranteed to avoid recovering incorrect signal (so called ‘aliasing problem’).

An analogous situation may exist in choosing cycle length (which is equivalent to sampling rate),
suggesting that we should consider using cycle length of less than half the shortest length of a
phenomena we are trying to model (e.g., 12 hours or shorter for a model that deals with daily hospital
stays). In models dealing with less frequent events, the modeler should select the cycle length that
minimizes the probability of more than one event happening within a single model cycle.

Chrosny Conjecture

Choose Markov model cycle length that is shorter than half the occurrence
interval of the fastest phenomenon you try to model.

The practical limitations on the cycle length depend on actual model run time - similar to practical
limitations in signal processing that required higher cost of hardware and software to increase the
processing speed. The remainder of this paper will address some practical approaches to establish
sufficiently short cycle times experimentally.

3. Markov models with cycle length as a variable

Most often Markov models are built with a fixed cycle length, chosen a priori by the modeler. They are
the simplest types of Markov Models for both cohort and individual patient simulations. However,
building a version of such models where cycle length is a variable is only moderately more complicated.



The ability to run sensitivity analysis on the cycle length is a great way to experimentally establish what
cycle length is sufficiently short and trade it off against expected run time.

An interesting case study of continuous time Partitioned Survival model conversion to variable cycle
length Markov model is discussed in the white paper “Equivalence of Partitioned Survival and Markov
models” * TreeAge Pro can automatically convert a PartSA model to a Markov model that is
instrumented with a variable cycle length.

The converted Markov model includes a new parameter CyclesPerYear. This parameter is used to

change the Markov model’s cycle length. Increasing CyclesPerYear shortens the cycle length and
improves the accuracy of the results with respect to the original PartSA model. The CyclesPerYear value
affects transition probability calculations in the complex expressions. Annual Costs and Utilities from

the PartSA model are divided by CyclesPerYear to generate appropriate values for the cycle length. Also,
the termination condition uses TimeHorizon multiplied by CyclesPerYear to make sure that consistent
TimeHorizon is maintained for different cycle lengths.
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Below are the “zoomed in” sections of the model with the relevant CyclesPerYear expressions.

Markov - PartSA

c¢Chemo = 100,000

cPostProgress = 10,000

CyclesPerYear = 1

pS1toS2 = DistTransProb("'Dist_Surv_ProgFree™,_stage/CyclesPerYear;1/CyclesPerYear)

pS2toS3 = DistTransProb("'Dist_Surv_Overall"™; _stage/CyclesPerYear;1/CyclesPerYear)
TimeHorizon = 30

util_PF =0.9

util_PP=0.7

t-- Markov Information

Termination condition: _stage >= TimeHeorizon * CyclesPerYear




Progression-Free State

--- Markov Information
Cycle Cost: cChemo / CyclesPerYear
Cycle Effectiveness: util_PF / CyclesPerYear

Post-Progression State

--- Markov Information

Cycle Cost: cPostProgress / CyclesPerYear
Cycle Effectiveness: util_PP/
CyclesPerYear

As can be seen the introduction and utilization of the cycles per year variable is not overly complicated
and can easily be done as the model is being built. While it is possible to introduce adjustable cycle
length to an existing model, the complexity of that task depends on the complexity of the model itself.
There are many search and replace features within TreeAge Pro that are helpful in this process, but it is
a bit more complex than building adjustable cycle length in from the start.

It should be noted that cycle length is varied between simulation runs and remains constant during
any a specific simulation. While it is possible to create models which change the cycle length during a
single simulation, these models are beyond the scope of this paper.

4. Using other models as references (DES, Partitioned Survival Analysis).

There are a number of different simple examples models showing equivalence of results between
PartSA (PartSA-1Curve.trex) and Markov model (Markov-1Curve.trex). An equivalent DES model is also
included (DES-1Curve.trex) and can be used as a reference for comparison with other models.
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PartSA - 3 State

GPFS = 1,000

disc_rate = 0

rate_PF =0.2

shape_PF = 1.0

sury_PF = DistSurv("Dist_Surv_ProgFree”)

Tate under Curve:
Continuous Cost: cPFS
Continuous Eff: ulil_PF

Progression-Free Sia
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Progression-Free Survival (PFS)

$4987.606239 | 4.488846 QALY

0

" [ - " - "

$4987 606239 | 4 488346 QALY

TimeHorizon = 30

util_PF = 0.9

-- PantSA Information

Time Horizon: TimeHorizon

PartSA model uses continuous time equation solver to
compute the areas under the survival curve and apply
them to the costs and effectiveness.

S "Markov-1Curve trex
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Markov - PariSA conversion
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- Markov Information

Termination condition: _stage >= TimeHorizon * CyclesPerYear
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Zooming in on the relevant results:

PartSA - 3 State

Progression-Free Survival (PFS)

cPFS = 1,000
disc_rate =0
rate_PF =0.2
shape_PF =1.0
surv_PF = DistSurv("Dist_Surv_ProgFree")
TimeHorizon = 30

util_PF =0.9

-- PartSA Information

Time Horizon: TimeHorizon

PartSA model uses continuous time equation solver to

compute the areas under the survival curve and apply
them to the costs and effectiveness.

=) *Markov-1Curve.trex
' | ' 2 ! 3

Markov - PartSA conversion
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ate under Curve: Progression-Free State
Continuous Cost: cPFS

Continuous Eff: util_PF

$4987.606239 \ 4.48:

4.987606
d O ode cd e 1eNg dald apezolida
e Ood 10 € dle e €d die eward
esPe ed d d e e dlfe d D
ovelre dled Ield e to Pa Are
- 5 6 7 8 9
Stay
rogression-Free State
5004
--- Markov Information Tan

Cycle Cost: cPFS / CyclesPerYear
Cycle Effectiveness: util_PF /

velesPerYe

ar

cPFS = 1,000
|CyclesPerYear = 1
disc_rate =0

rate_PF =0.2
shane PF=10

pS1toS2 = DistTransProb("Dist_Surv_ProgFree";_stage/CyclesPerYear;1/CyclesPerYear)

—

Dead

M|  [5004.220520\ 4503798
1

<] [0.00

If we change the CyclesPerYear to 12 (monthly cycle), the Markov results will approximate the PartSA
results to within less than 0.01%:
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PartSA - 3 State Progression-Free Survival (PFS)

cPFS = 1,000
disc_rats = 0
rate PF=02 Continuous Cost: cPFS
shape_PF =1.0 Continuous Eff: util_PF
surv_PF = DistSurv("Dist_Surv_ProgFree")
TimeHorizon = 30 4.987608
uti_PF =09
- PartSA Information

Time Horizon: TimeHorizon

[$4987.606239 \ 4.488846 QALY |

) “Morkoy-Curve trex = [Fl Monte Corko Summary Text Report - DES-1Curve.rex | [l Monte Carlo All Statitics Report - DES-1Curvedrex
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Stay in Progression-Free State

With CyclesPerYear set to 12 (monthly) the results of the
Markov model converge to within 0.01%

Progressiqn-Free State

#
4987.721692 \ 4.488950; FP = 0.002
-- Markov Information Tansition o Dea
Cycle Cost: cRFS / CyclesPerYear
Cycle Effectiveess: util_PF /

Markov - PartSA converg#

" pS1toS2
i )| [4987.72169214.488950 |
cPFS = 1,000 4987.721692 \ 4.488950
CyclesPerYear = 12
disc_rate =0 Dead
pS1teS2 = DistTransProb("Dist_Surv_ProgFree";_stage/CyclesPerYear;1/CyclesPerYear) - —
rate_PF = 0.2 Q 0.000000 '\ 0.000000, FP = 0.998
shape_PF =10 /]

surv_PF = DistSurv("Dist_Surv_ProgFree")

TimeHerizen = 30

util_PF = 0.8

- Markov Information

Terminaticn condition: _stage >= TimeHerizon * CyclesPerYear

An equivalent DES model can be used as a reference as well. However, DES models have to use a Monte
Carlo simulation and not a simple rollback expected value calculation. The example below shows the
results of a simulation of 10,000 samples of 1,000 trials each. The summary report can be used for
estimating the prediction interval of the mean costs and effectiveness.

{2y Launch Pad ;‘]PartSAJCurve.lrex ﬂ'DESJCuNe.lrex &3 +
DI B B T S S S S S B B - BN [ ISR IR | IR
Transition to Dead
. . ) ﬂ Dead
Progression-Free State TimeOfDeath
- DECS “’;m’"::g“” Termination Condition
ime Cost: cl - -
Time Effectiveness: util PE - 4 Termination Condition
TimeHorizon - _time
Enter label DES Base 1
D,
GPFS = 1,000 ~ DES Information Dead
rate_PF = 0.2 Termination condition: _time >= <]
shape_PF = 1.0 MmeHorizon 0
TimeHorizon = 30
TimeOfDeath = Dist(1) Termination Condition
util_PF = 0.9 " 4

0

2 *Markov-1Curve trex E Monte Carlo Summary Text Report - DES-1Cihgdre _

Monte Carlo All Statistics Report (DES-1Curve.trex)

Statistic Cost Effectiveness NMB Dist_Surv_ProgFree

Mean 4990724573 | 4491652 | 219591.881201 500325

Std Deviation 156.372225 0140735 6830 3T7NR 0.15888

Minimum 4411313718 3970182 194097.803602 mLl3] . .
25% 4688.865763 4.219979 206310.093589 469577 Runnlng 10,000 samples of 1000 trials
10% 4788.895227 4310006 210711389991 479827 gives us a good set of statistics to
Median 4989.868401 4490882 219554.209663 500309 . . .

90% 5191.904374 4672714 228443.792448 5.20824 estimate the pred|C|t|0n interval around
975% 5304.500264 4774050 233398011609 532257 the mean of Cost and of Effectiveness
Maximum 5583.027022 5024724 245653.188980 56013

Sum 49907245727502 44916521155 2195018812.014057 5003247461 . .

Size (n) 10000.000000  10000.000000 10000.000000 Shown in this Summary Re

Variance 24452272598 0.019806 47339599.74968

Variance/Size 2445227 0.000002 47332

0.00159

SQRT{Veriance/Size] | 565722 MNINI000T407 ]



the means gives the following results:

Statistic
Mean

Std Deviation
Minimum
2.5%

10%

Median

90%

97.5%
Maximum
Sum

Size (n)
Variance
Variance/Size
SQRT[Variance/Size]

Desired Prediction confidence %
Inverse Normal statistic at the desired level

Upper bound of the mean Prediction Interval
The Mean estimate
Lower bound of the mean Prediction Interval

Cost
4988.149169
156.7140807
4428.283784
4680.930057
4788.126527
4986.104767
5186.350679
5305.225846
5662.223644
49881491.69

10000
24559.30308
2.455930308
1.567140807

95%
1.959963985

4991.220708
4988.149169
4985.077629

Exporting the summary report to Excel and adding some basic formulas for 95% prediction interval of

Effectiveness
4.489334252
0.141042673
3.985455406
4.212837052
4.309313874

4.48749429
4.667715611
4.774703262

5.09600128
44893.34252

10000
0.019893035
1.9893E-06
0.001410427

4.492098638
4.489334252
4.486569866

The DES results agree well with the PartSA results and monthly cycle Markov results.

Note that such close convergence depends on the shape of the survival curve. If the rate and shape of
the distribution is changed using the parameters (rate_PF and shape_PF), convergence will change
depending on how fast the survival curve decays. (For example, setting the rate to 5 and shape to 10
and time horizon to 1, and then comparing the results at different CyclesPerYear.)

Obviously the more realistic Markov models can have a much more complicated structure and capture
transitions, which cannot be represented within PartSA models. PartSA models rely on assumption that
transitions are only made toward sicker states and eventually to the dead state, they cannot be used as
a reference for more complicated Markov models. However, DES models can replicate any Markov
structure and tend to run more efficiently than Markov models, so they can be used to compare and
double check results of Markov models.



5. Empirical assessment of appropriate cycle length.

Another way to assess if the cycle length is sufficiently short is to use the one-way sensitivity analysis on
the CyclesPerYear variable and observe how the results converge to a stable set.

For example, using the same Markov example model (Markov-1Curve.trex) and running one-way
sensitivity analysis with CyclesPerYear starting at 1 and ending at 141 with 14 intervals will generate the

following results:

CyclesPerYear Cost Eff

1 5004.22052 | 4.503798468
11 | 4987.743638 | 4.488969274
21| 4987.643938 | 4.488879544
31 | 4987.623539 | 4.488861185
41 | 4987.616129 | 4.488854516
51 | 4987.612631 | 4.488851368
61 | 4987.610707 | 4.488849636
71 | 4987.609537 | 4.488848583
81 | 4987.608773 | 4.488847896
91 | 4987.608247 | 4.488847422
101 | 4987.607869 | 4.488847082
111 | 4987.607588 | 4.48884683
121 | 4987.607375 | 4.488846637
131 | 4987.607208 | 4.488846487
141 | 4987.607075 | 4.488846368

Depending on the desired level of accuracy (how far the cost-effectiveness decision point is from the
threshold) and practical run time of the model is, cycle time length can be chosen appropriately.

6. Conclusions.

It has been a common knowledge that shorter cycle times increase the accuracy of Markov model
estimates. In this paper we tried to offer some practical ways to confirm this fact and offer ways of
instrumenting models to facilitate experimenting with variable cycle lengths. The use of Partitioned
Survival Analysis and Discrete Event Simulation models as references to confirm the Markov results was
demonstrated. Finally, an analogy to signal processing’s choice of sampling frequency established by
Claude Shannon was highlighted as a practical rule of thumb: to use cycle length at least half the length
of typical events being modelled. We are not aware of any detail mathematical proofs similar to
Shannon’s theorem in the domain of Markov models, but such research might be of interest in the
future.
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